next on

Phylo-genetic conservation

Catherine Graham
Stony Brook University

Phylogenetic beta-diversity: a means to understand, map and conserve spatial patterns of biological diversity

Catherine Graham
Catherine Graham

Beta-diversity has long been recognized as an instrumental diversity measure providing insight as to how and why diversity varies across space. Beta-diversity also underlies most complementarity-based reserve design algorithms which quantify the extent to which an area contributes unrepresented features to an existing area or set of areas. In the early 2000 researchers started to recognize that beta-diversity could be extended to include phylogenetic information. By accounting for shared evolutionary history among assemblages/regions phylogenetic beta-diversity can provide insights into both the ecological and evolutionary mechanisms influencing variation in species diversity and the best way to conserve phylogenetic diversity in a reserve system. In this seminar I will begin by briefly reviewing various definitions and approaches to measuring and mapping beta-diversity. Then I will use a series of examples to show some of the new insights phylogenetic beta-diversity has provided to both basic science and conservation.

Sandrine Pavoine
Muséum National d'Histoire Naturelle, Paris

Comparing patterns in phylogenetic and trait diversity

Studying the phylogeny led to the emergence of interdisciplinary approaches combining ecology, evolutionary biology and biogeography. The analysis of the phylogenetic relatedness among species complemented the analysis of the functional (trait-based) similarities among species, and even sometimes replaced it when phylogenetic relatedness was considered as a proxy for functional similarity. The use of phylogenetic diversity as a proxy for functional diversity as been questioned due to the observation of moderate phylogenetic signal in many field studies. From a methodological viewpoint, a fundamental difference between phylogenetic and functional analyses is that phylogeny is intrinsically dependent on a tree-like structure whereas trait data can, most of time, only be forced to adhere a tree structure, not without some loss of information. I will discuss the ways phylogenetic and functional diversity patterns can be compared and the consequences of their simultaneous analyses for conservation and community ecology.