next on phyloseminar.org

Ebola

Daniel Park
Broad Institute

Ebola virus epidemiology, transmission, and viral evolution from four months of sequencing in Sierra Leone (Overview)

Daniel Park
Daniel Park

Adding to the work reported in Gire, et al (Science, 2014) which sequenced Ebola viruses from the first three weeks of the epidemic in Sierra Leone, we here present analyses of 150 additional viral genomes sampled from EVD cases at Kenema Government Hospital between the months of June to September 2014. We describe continued evidence for sustained human-to-human transmission with no additional zoonotic events, and preliminary results concerning new lineages from Guinea. We also characterize the epidemiological history of the limited number of exported viruses from the country. We also observe a slowing of the viral substitution rate over the course of the outbreak, consistent with the increased effect of purifying selection as the outbreak continues over time. These findings allow a closer view of viral evolution during its extended time in human populations and provide critical insights into the movement of the virus through the region.

This is the first talk in a pair of talks from collaborators Daniel Park and Gytis Dudas concerning their analysis of Ebola virus sequences.

Gytis Dudas
U Edinburgh

Ebola virus epidemiology, transmission, and viral evolution from four months of sequencing in Sierra Leone (Analysis and Methods)

Adding to the work reported in Gire, et al (Science, 2014) which sequenced Ebola viruses from the first three weeks of the epidemic in Sierra Leone, we here present analyses of 150 additional viral genomes sampled from EVD cases at Kenema Government Hospital between the months of June to September 2014. We describe continued evidence for sustained human-to-human transmission with no additional zoonotic events, and preliminary results concerning new lineages from Guinea. We also characterize the epidemiological history of the limited number of exported viruses from the country. We also observe a slowing of the viral substitution rate over the course of the outbreak, consistent with the increased effect of purifying selection as the outbreak continues over time. These findings allow a closer view of viral evolution during its extended time in human populations and provide critical insights into the movement of the virus through the region.

This is the second talk in a pair of talks from collaborators Daniel Park and Gytis Dudas concerning their analysis of Ebola virus sequences.