next on phyloseminar.org

Continuous traits

Josef Uyeda
Virginia Tech

On the need for phylogenetic natural history

Josef Uyeda
Josef Uyeda

The availability of phylogenetic trees based on molecular sequence data has revolutionized evolutionary biology by providing a map from which we can understand divergence and diversification across the tree of life. Numerous phylogenetic comparative approaches have opened up new avenues for testing macroevolutionary hypotheses regarding the drivers of the tempo and mode of trait evolution and lineage diversification. However, recent crises in the field have suggested that many of the methods we commonly use don't tell us what we would like them to. Specifically, I will show that unreplicated evolutionary events can break nearly every comparative method for testing associations from phylogenetically structured data. I will argue that one solution to this problem is to unite hypothesis testing with data-driven approaches, which I term "phylogenetic natural history", to disentangle the impact of singular shifts from replicated patterns of association. More generally, I will argue that we should abandon thinking of phylogenetic comparative methods as "corrections for statistical non-independence" and more meaningfully confront how our causal hypotheses map on to phylogenetically structured data.

Michael Landis
Yale

Phylogenetic models of pulsed evolution

One of the most apparent features of life is its diversity of forms. Biologists are especially driven to learn what evolutionary processes generated which components of life's variation. Central to this puzzle is whether or not phenotypic change tends to accumulate by slow but steady increments or by rare but sudden pulses. Although many phylogenetic models and methods are known for describing incremental change, such as Brownian motion and the Ornstein-Uhlenbeck process, models of pulsed change have received less study, making it difficult to measure the prevalence of competing evolutionary modes. My talk provides an overview of evidence, theory, and methods that have advanced our understanding of evolutionary pulses of trait change. I share some of my contributions on the exploration of this topic, including recent findings that phylogenetic models of pulsed evolution explain a major component of vertebrate body size evolution. I conclude with some remarks regarding the potential for models of pulsed evolution to aid in the study of macroevolution.